IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124002969.html
   My bibliography  Save this article

Evaluation of the technical properties of reactive-MgO cements produced by solar calcination of magnesite in a fluidized bed reactor

Author

Listed:
  • Telesca, Antonio
  • Ibris, Neluta
  • Marroccoli, Milena
  • Tregambi, Claudio
  • Solimene, Roberto
  • Di Lauro, Francesca
  • Ruiz de Ballesteros, Odda
  • Salatino, Piero
  • Montagnaro, Fabio

Abstract

Magnesium oxide (MgO)-based cements display very interesting technical properties and environmentally-friendly features. The novel idea investigated in this study is to synthesize MgO cements, using as raw material natural magnesite calcined in fluidized bed heated by concentrated solar energy. Calcination was performed in a lab-scale system equipped with a concentrated solar simulator, operated under different process conditions. The most reactive MgO was mixed with 3% by weight of MgCO3 (nucleation agent) and four different solutions containing magnesium acetate or chloride. The binders were hydrated in air or 20% CO2 atmosphere (accelerated carbonation conditions) until 28 days. X-ray diffraction, differential-thermal and mercury intrusion porosimetry analyses, and compressive mechanical strength tests, were performed on the hydrated systems. Solar calcination produced a highly reactive MgO. The performance of the cement pastes improved at higher curing times, and when using magnesium acetate as hydration agent, as also witnessed by the application of a kinetic model. Accelerated carbonation conditions further enhanced the mechanical properties of the cements thanks to the formation of nesquehonite, allowing to reach a mechanical strength comparable to that of ordinary Portland cements class 32.5. The achieved outcomes encourage the production of low-CO2 magnesite cements from solar calcined magnesite, boosting the green aspect of the entire process.

Suggested Citation

  • Telesca, Antonio & Ibris, Neluta & Marroccoli, Milena & Tregambi, Claudio & Solimene, Roberto & Di Lauro, Francesca & Ruiz de Ballesteros, Odda & Salatino, Piero & Montagnaro, Fabio, 2024. "Evaluation of the technical properties of reactive-MgO cements produced by solar calcination of magnesite in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002969
    DOI: 10.1016/j.renene.2024.120231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.