IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124002908.html
   My bibliography  Save this article

Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production

Author

Listed:
  • Naidoo, Joab C.
  • Moodley, Preshanthan
  • Sanusi, Isaac A.
  • Sewsynker-Sukai, Y.
  • Meyer, Edson L.
  • Gueguim Kana, Evariste

Abstract

A two-stage green liquor-inorganic salt pretreatment was developed to enhance sugar recovery from sorghum leaves (SL) for biofuel production. Process inputs included green liquor (GL) concentration, MgCl2 concentration and microwave power intensity. A coefficient of determination (R2) of 0.86 was achieved with optimal conditions of 31% (v/v) GL, 1.46 M MgCl2 and 600 W resulting in fermentable sugar yield of 0.719 g/g. This was followed by simultaneous saccharification and bioethanol production using the pretreated SL giving rise to maximum bioethanol concentration of 12.16 g/L. Thereafter, bioethanol fermentation effluent was channelled towards biohydrogen production and a peak H2 fraction of 31.85% (78.44 ml H2/g sugar) was obtained. These findings demonstrate the sequential valorisation of SL, GL, and bioethanol fermentation effluent towards a sustainable, cost effective and eco-friendly lignocellulosic biorefinery concept.

Suggested Citation

  • Naidoo, Joab C. & Moodley, Preshanthan & Sanusi, Isaac A. & Sewsynker-Sukai, Y. & Meyer, Edson L. & Gueguim Kana, Evariste, 2024. "Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002908
    DOI: 10.1016/j.renene.2024.120225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124002908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.