IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018050.html
   My bibliography  Save this article

Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment

Author

Listed:
  • Ma, Chao
  • Wu, Runze
  • Liu, Zhao
  • Li, Xinyang

Abstract

The paper undertakes a novel study that aims to analyze the performance characteristics of ten monocrystalline or polycrystalline silicon modules employing different emerging technologies in waters environment. In this work, monitoring data were collected over a duration of one year using a multi-technology empirical platform within a floating photovoltaic power plant. The energy performance of different module technologies was evaluated using multiple performance metrics such as array yield, performance ratio, capacity factor, efficiency and energy density. By considering environmental variables such as irradiance, ambient temperature, and water temperature, the thermal behavior of photovoltaic modules under water surface deployment conditions is revealed. Furthermore, the multiple variable coupling analysis was conducted to determine the correlation between the performance metrics of various technology type modules and meteorological variables in waters environment. The results indicate that the energy performance and reliability of monocrystalline silicon modules using double-glass double-sided P-type PERC technology is superior to other technologies in waters environment, and the performance ratio and capacity factor reach 88.95 % and 15.04 %, respectively. The heterojunction with intrinsic thin-layer (HIT) technology module exhibits better thermal stability and holds an advantage in the deployment of limited water surface areas due to its higher energy density. Moreover, the performance ratio of floating photovoltaic systems shows a weak correlation with irradiance, and is more significantly affected by the negative correlation of ambient temperature than water temperature.

Suggested Citation

  • Ma, Chao & Wu, Runze & Liu, Zhao & Li, Xinyang, 2024. "Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018050
    DOI: 10.1016/j.renene.2023.119890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.