IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017093.html
   My bibliography  Save this article

Water-free surface silanization on composite zeolite 13X/MgSO4 in a direct-contact adsorption heat pump for stable steam generation

Author

Listed:
  • Chen, Tingting
  • Xue, Bing
  • He, Xiaoran
  • Wei, Ruixun
  • Li, Guangyao

Abstract

Direct-contact method has been utilized in an open-loop adsorption heat pump based on composite adsorbent for high-temperature steam generation. Deliquescence problem arisen from the loss of salt in adsorbent under high humidity environment limits the stable performance during adsorption process. The composite zeolite was functionally modified with octyltrimethoxysilane (OTMOS) agent during water-free process based on liquid chemical grafting method. Measurement results from XRF (X-Ray Fluorescence) confirm the stable amount of salt is kept inside the modified zeolite. Characterization results from BET (Brunauer-Emmett-Teller) reveal the facts that pore volume and diameter are reduced simultaneously with the decrease in surface area. During regeneration dry air at 130 °C is used for removing water out of the packed bed filled with S8-7.5 (the composite adsorbent modified with 7.5 % OTMOS). During generation process superheated steam at 200 °C is obtained directly from hot water at 72 °C. GTL (Gross Temperature Lift) reaches 115 °C. COPh (coefficient of performance for heating) and SHP (specific heating power) for steam generation are increased by 16.2 % and 10.4 %, respectively after modification. The corresponding increases in system indicators stem from the promotion of steam mass, as adsorption abilities for composite zeolite are maintained well during direct contact with liquid water after modification.

Suggested Citation

  • Chen, Tingting & Xue, Bing & He, Xiaoran & Wei, Ruixun & Li, Guangyao, 2024. "Water-free surface silanization on composite zeolite 13X/MgSO4 in a direct-contact adsorption heat pump for stable steam generation," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017093
    DOI: 10.1016/j.renene.2023.119794
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.