IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123017056.html
   My bibliography  Save this article

Optimizing vertical ground heat exchanger modelling through GPU-accelerated computation strategies

Author

Listed:
  • Moghanni, Reza
  • Hakkaki-Fard, Ali

Abstract

Enhancing Vertical Ground Heat Exchanger (VGHE) modelling for efficient Vertical Ground-Coupled Heat Pump (VGCHP) systems, renowned for their eco-friendly operation, has garnered significant attention. Optimally designing and sustaining the long-term efficiency of VGCHP systems necessitates rigorous, protracted VGHE modelling, a process fraught with computational intensity. To surmount this challenge, this contribution introduces an accelerated VGHE modelling paradigm grounded in Graphics Processing Unit (GPU) processing. This entails employing the Finite Line Source (FLS) model based on Fast Fourier Transform (FFT). To ameliorate computational demands, the processing capabilities of both Central Processing Units (CPUs) and GPUs are harnessed, leveraging CPU- and GPU-based FFT and inverse FFT (IFFT). Hybrid and non-hybrid processing modes are explored, differentiating between CPU- and GPU-based FFT in non-hybrid scenarios, while hybrid approaches combine both for distinct simulation periods. By scrutinizing two processing systems with varying specifications, diverse CPU- and GPU-based FFT combinations are assessed. Findings unequivocally underscore the superiority of CPU-based FFT for initial years, succeeded by GPU-based FFT for ensuing years, in terms of computational efficiency. The efficacy of the hybrid computation approach is demonstrated through a reduction of total computational time in 20-year VGCHP operation simulations by up to 33.5 % compared to conventional CPU-based FFT methods.

Suggested Citation

  • Moghanni, Reza & Hakkaki-Fard, Ali, 2024. "Optimizing vertical ground heat exchanger modelling through GPU-accelerated computation strategies," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017056
    DOI: 10.1016/j.renene.2023.119790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.