IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016919.html
   My bibliography  Save this article

Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox

Author

Listed:
  • Wang, Cheng

Abstract

The differential gear train is a common component in wind turbine gearboxes. Investigating the dynamic performance of the gear train is crucial for improving its transmission capabilities. Unlike planetary and compound gear train, there has been relatively little research on differential gear train. Additionally, transmission efficiency is a critical performance metric for gear train, while addressing volume constraints remains a significant challenge in gear research. Currently, there is a lack of relevant research on dynamic transmission efficiency and precise volumetric modeling for differential gear train. Therefore, this paper introduces a high power density design approach for the differential gear train, utilizing the analysis of its dynamic performance. Practical application is demonstrated through two examples. In the first example, the system achieved a 26.32 % reduction in power loss, a 35.44 % decrease in volume, and a maximum root mean square reduction of 12.4 % in component vibration acceleration. In the second example, the system achieved a 19.21 % reduction in power loss, a 41.07 % decrease in volume, and a maximum root mean square reduction of 103.4 % in component vibration acceleration. This research establishes a solid foundation for improving dynamic performance, reducing energy consumption, and minimizing volume in helical differential gear train.

Suggested Citation

  • Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016919
    DOI: 10.1016/j.renene.2023.119776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.