IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016841.html
   My bibliography  Save this article

Improving the prediction of extreme wind speed events with generative data augmentation techniques

Author

Listed:
  • Vega-Bayo, M.
  • Pérez-Aracil, J.
  • Prieto-Godino, L.
  • Salcedo-Sanz, S.

Abstract

Extreme Wind Speed events (EWS) are responsible for the worst damages caused by wind in wind farms. An accurate estimation of the frequency and intensity of EWS is essential to avoid wind turbine damage and to minimize cut-out events in these facilities. In this paper we discuss how generative Data Augmentation (DA) techniques improve the performance of Machine Learning (ML) and Deep Learning (DL) algorithms in EWS prediction problems. These problems are usually tackled as classification tasks, which are highly unbalanced due to the small number of EWS events in wind farms. Different versions of Variational AutoEncoders (VAE) are proposed and analysed in this work (VAEs, Conditional VAEs (CVAEs) and Class-Informed VAEs (CI-VAE)) as generative DA techniques to balance the data in EWS problems, leading to better performance of the prediction systems. The proposed generative DA techniques have been compared against traditional DA algorithms in a real problem of EWS prediction in Spain, considering ERA5 reanalysis data as predictive variables. The results showed that the CI-VAE with a Convolutional Neural Network approach obtained the best results, with values of Precision 0.62, Recall 0.74 and F1 score 0.67, improving up to 4% the results of the method without data augmentation techniques.

Suggested Citation

  • Vega-Bayo, M. & Pérez-Aracil, J. & Prieto-Godino, L. & Salcedo-Sanz, S., 2024. "Improving the prediction of extreme wind speed events with generative data augmentation techniques," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016841
    DOI: 10.1016/j.renene.2023.119769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.