IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016774.html
   My bibliography  Save this article

A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules

Author

Listed:
  • Sun, Leihou
  • Bai, Jianbo
  • Pachauri, Rupendra Kumar
  • Wang, Shitao

Abstract

An efficient photovoltaic (PV) tracking system enables solar cells to produce more energy. However, commonly-used PV tracking systems experience the following limitations: (ⅰ) they are mainly applied to single-sided PV panels; (ⅱ) they employ conventional astronomical algorithms that cannot adjust the tracking path in real time according to variable weather. In this study, a model of horizontal single-axis tracking bracket with an adjustable tilt angle (HSATBATA) is developed, and the irradiance model of moving bifacial PV modules is designed, which considers the mounting height, spacing and ground shading of PV panels. Furthermore, an adaptive real-time tracking (ARTT) algorithm is put forward to obtain the optimal tracking path for PV cells, which considers the energy consumption of tracking motors, the front and back irradiance of solar cells, cell temperature and ambient wind speed. The test results indicate that the presented ARTT algorithm enhances the energy of PV modules by 32.7 % and 7.5 %, respectively, compared to the fixed bracket and the conventional tracking algorithm. Additionally, the number of motor starts of the PV tracking system is reduced by 71.7 % compared with that of the conventional algorithm, which greatly contributes to extending the service life of PV tracking brackets and lowering the cost of electricity. Present study will help to improve the theoretical research system of PV tracking bracket construction, irradiance modeling of moving bifacial modules, and intelligent tracking algorithms.

Suggested Citation

  • Sun, Leihou & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Shitao, 2024. "A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016774
    DOI: 10.1016/j.renene.2023.119762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.