IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016671.html
   My bibliography  Save this article

Flow through horizontal axis propeller turbines in a triangular array

Author

Listed:
  • Mendes, Rafael C.F.
  • Chapui, Benoit
  • Oliveira, Taygoara F.
  • Noguera, Ricardo
  • Brasil, Antonio C.P.

Abstract

When two horizontal rotors are put side-by-side, with slight gaps between them (less than two diameters), the flow velocity near the centerline is higher than the free stream. In this paper, we employ experimental and computational methods to examine the turbulent wake flow of a single turbine, the interactions between two side-by-side rotors, and the power output of a turbine inside a triangular arrangement (with two rotors upstream and one downstream). The experiments are carried out in a wind tunnel using 1:10 scale models. The wake flow is characterized by applying the hot-wire anemometer. Numerical simulations are employed to characterize a single turbine’s near-wake flow and guide side-by-side rotor investigations. The results demonstrate that more power can be converted by a group of three horizontal axis turbines arranged in a triangular frame than by three separate turbines. We show that the RANS turbulence model accurately computes mean velocity but not Turbulence Intensity (TI). We propose a new URANS post-processing approach that improves TI calculations at the wake region. Our findings suggest that wind, tidal current, and hydrokinetic farms may be able to convert more power adopting triangular arrays than they can in standard aligned or staggered row designs.

Suggested Citation

  • Mendes, Rafael C.F. & Chapui, Benoit & Oliveira, Taygoara F. & Noguera, Ricardo & Brasil, Antonio C.P., 2024. "Flow through horizontal axis propeller turbines in a triangular array," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016671
    DOI: 10.1016/j.renene.2023.119752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.