IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016427.html
   My bibliography  Save this article

Performance analysis of a novel direct absorption parabolic trough solar collector with combined absorption using MCRT and FVM coupled method

Author

Listed:
  • Chen, Zhuo
  • Han, Xinyue
  • Ma, Yu

Abstract

Direct absorption parabolic trough solar collector (DAPTSC) using nanofluid absorber has been demonstrated as an efficient technology for exploiting solar energy at high temperature. However, most mono nanofluids are unable to achieve broadband absorption and hybrid nanofluids are unstable at high temperature. In this work, the mono nanofluid and optical glass combined absorption is proposed for the DAPTSC. In which the absorption glass (HB850) and an outer glass tubes form an annular space for indium-tin-oxide (ITO)/Therminol VP-1 nanofluid flowing. Monte Carlo Ray-Tracing and Finite Volume Method (MCRT-FVM) coupled model is developed and validated for system investigation. The results show that the novel collector with the combined absorber exhibits obvious enhancement in thermal performance compared to Therminol VP-1 or ITO/Therminol VP-1 nanofluid. The DAPTSC with concentric annular tube (CAT) has a significantly superior thermal performance to that of the single tube collector, with 45.91 % higher achievable temperature gain and 1.15 % more achievable exergy efficiency. Finally, an eccentric annular tube (EAT) is proposed for further improvement. To quantify the performance improvement of the DAPTSC with EAT, a comparison has been made to that of a DAPTSC with CAT. The results indicate that EAT configuration shows 1.96 % enhancement in the exergy efficiency.

Suggested Citation

  • Chen, Zhuo & Han, Xinyue & Ma, Yu, 2024. "Performance analysis of a novel direct absorption parabolic trough solar collector with combined absorption using MCRT and FVM coupled method," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016427
    DOI: 10.1016/j.renene.2023.119727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.