IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016348.html
   My bibliography  Save this article

Investigation on the thermal control and performance of PCM–porous media-integrated heat sink systems: Deep neural network modelling employing experimental correlations

Author

Listed:
  • Rehman, Tauseef-ur
  • Sajjad, Uzair
  • Lamrani, Bilal
  • Shahsavar, Amin
  • Ali, Hafiz Muhammad
  • Yan, Wei-Mon
  • Park, Cheol Woo

Abstract

Phase change material (PCM)-based heat sinks can offer reliable and effective thermal management (TM) solutions for increasingly sophisticated applications. A critical aspect of such heat sinks is determining how long it takes them to reach a set-point temperature. However, no generalised method exists in the literature that can predict and interpret the thermal performance of a wide range of PCM–porous media-integrated heat sinks. In this regard, this study examines the heat transfer characteristics of PCM-based heat sinks integrated with various metallic foams through experimental and deep learning (DL) techniques. The experiments are performed for transient TM analysis of various PCM-based heat sinks. Diverse variables, including foam porosity (0.95–0.97), PCM fraction (0.6–0.8), heat flux (0.8–2.4 kW/m2), foam materials (Fe–Ni alloy, Ni and copper) and PCM type (RT-35HC, RT-44HC, RT-54HC and paraffin wax), are investigated in this study. The experimental data are fed to the optimal DL model using the Bayesian surrogate model-tuned hyperparameters. Utilising a correlation analysis, as exemplified by the heat map and correlation plot, in conjunction with explainable artificial intelligence, it has been deduced that the thermal performance of the heat sink is principally influenced by factors such as PCM type, PCM fraction, foam material, foam porosity, and heat flux. Comparing the model's predicted data with the empirical findings, a good agreement was observed. Specifically, the mean absolute error (MAE) for the anticipated temperature and gradient registered at 0.0438 and 0.0054, whilst the mean square error (MSE) manifested values of 0.0579 and 0.0087, respectively. The proposed model can accurately assess the heat sink's thermal performance (correlation coefficient, R2 = 0.99) for various PCM types, fractions, foam materials, applied heat flux and foam porosity.

Suggested Citation

  • Rehman, Tauseef-ur & Sajjad, Uzair & Lamrani, Bilal & Shahsavar, Amin & Ali, Hafiz Muhammad & Yan, Wei-Mon & Park, Cheol Woo, 2024. "Investigation on the thermal control and performance of PCM–porous media-integrated heat sink systems: Deep neural network modelling employing experimental correlations," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016348
    DOI: 10.1016/j.renene.2023.119719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.