IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016026.html
   My bibliography  Save this article

Integrated physical design, control design, and site selection for an underwater energy-harvesting kite system

Author

Listed:
  • Naik, Kartik
  • Vermillion, Chris

Abstract

This paper presents a co-design framework that optimizes the kite design, site, and controller of a kite-based marine hydrokinetic (MHK) energy-harvesting system. The formulation seeks to maximize a techno-economic metric, namely power-to-mass ratio, by simultaneously considering three key categories of decision variables while accounting for the coupling between the three. The simultaneous consideration presents computational challenges associated with optimizing a large number of decision variables, a subset of which (control variables) are time trajectories. The multi-fidelity co-design formulation presented in this work utilizes two techniques, namely nesting and layering, to solve the optimization problem in a computationally tractable manner without significantly compromising on accuracy. Specifically, nesting allows for efficient integration of the three optimization sub-modules into one integrated framework without accuracy losses, whereas layering allows for successive design space reduction as the overall optimization progresses from using a low-fidelity model to using a higher-fidelity model. The resulting integrated co-design tool was applied to a region of interest off the North Carolina coast to optimally choose a combination of deployment site, kite design, and control strategy. We show that the integrated co-design tool results in a two-fold performance improvement over benchmarks derived from sequential (or independent) optimization of the kite categories, thereby underscoring the need for co-design. Computational effectiveness is demonstrated by comparing the computational cost of the nested and layered approach against the estimated computational costs that would be required to perform a single high-fidelity integrated optimization over the entire design space.

Suggested Citation

  • Naik, Kartik & Vermillion, Chris, 2024. "Integrated physical design, control design, and site selection for an underwater energy-harvesting kite system," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016026
    DOI: 10.1016/j.renene.2023.119687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.