IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016014.html
   My bibliography  Save this article

A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate

Author

Listed:
  • Zhang, Yelin
  • Tso, Chi Yan
  • Tse, Chung Fai Norman
  • Fong, Alan Ming-Lun
  • Lin, Kaixin
  • Sun, Yongjun

Abstract

Radiative sky coolers (RSCs) can reduce building roof heat gains by radiating heat to outer space. However, their performance during daytime is limited, with substantial roof heat gains still occurring due to high ambient temperatures. Additionally, much of the cooling produced at night is wasted since air conditioners in non-residential buildings are often not operating. To address these limitations, we propose a novel thermal storage-heat pipe-integrated radiative sky cooler system (TS-HP-RSC). It utilizes water thermal storage to capture nighttime sky cooling for use during the day. A gravity-assisted heat pipe unidirectionally transports this stored cooling to the indoor space, preventing losses to the environment. An experimental platform is established integrating the proposed system, a baseline case, and measurement instrumentation. Compared to the baseline, the TS-HP-RSC system not only eliminated daytime cumulative heat gains (0.55–1.27 kJ) but also provided supplemental cooling (1.57–2.75 kJ). This yielded substantial daytime heat gain reductions of 223.62 %–600 % versus the baseline. Similar reductions occurred in peak heat gains. By enhancing daytime cooling, the TS-HP-RSC system can substantially curb roof heat gains in subtropical climates, enabling significant energy savings.

Suggested Citation

  • Zhang, Yelin & Tso, Chi Yan & Tse, Chung Fai Norman & Fong, Alan Ming-Lun & Lin, Kaixin & Sun, Yongjun, 2024. "A novel radiative sky cooler system with enhanced daytime cooling performance to reduce building roof heat gains in subtropical climate," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016014
    DOI: 10.1016/j.renene.2023.119686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.