IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016002.html
   My bibliography  Save this article

Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island

Author

Listed:
  • Superchi, Francesco
  • Giovannini, Nathan
  • Moustakis, Antonis
  • Pechlivanoglou, George
  • Bianchini, Alessandro

Abstract

Hybrid energy systems comprising renewables (mainly wind and solar) and storage systems are increasingly welcome to serve small communities or areas, such as small islands. In particular, the present study deals with the hybrid power station of Tilos, a little island located in the Greek Dodecanese, which includes a 800 kW wind turbine, a 160kWp PV field, and a 2.88 MWh NaNiCl2 battery; the system is also connected to the Kos-Kalymnos electrical network via a submarine cable. Currently, it is used to export its whole energy production under the management of the Greek company Eunice Energy Group. The agreement with the grid regulator is conceived to involve a remuneration for the energy output in three power levels (0 kW, 200 kW, 400 kW), with hourly dispatch provided the day before. Economic penalties will be applied in the near future for failure to respect power levels, whether in the form of excess or deficiency. This must be done in accordance with the available power to avoid surpluses or deficits, as well as excessive curtailment of renewable energy. In this work, a way to optimize energy fluxes of the island is proposed to better exploit the potential revenue, without excessively resorting to curtailments. The optimizations are performed in a Python environment through the “Gurobi” optimization solver, which is based on Mixed Integer Linear Programming (MILP). Scheduling emerges as a result of a rolling horizon approach. The new scheduling method reveals that there is potential for an increase in exported energy by 87.1% and potentially doubles the earnings over the current operation. Furthermore, novel scenarios are proposed to explore how different agreements with the grid operator would shift the optimal solution. Compared to an ideal optimized control under the current restrictions, a scenario that introduces the possibility of shutting down the wind turbine may increase the annual earnings by 10%, while a scenario that introduces a higher power band has the potential to increase annual earnings by 29.1%.

Suggested Citation

  • Superchi, Francesco & Giovannini, Nathan & Moustakis, Antonis & Pechlivanoglou, George & Bianchini, Alessandro, 2024. "Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016002
    DOI: 10.1016/j.renene.2023.119685
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.