IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015914.html
   My bibliography  Save this article

Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin

Author

Listed:
  • Velásquez, Laura
  • Romero-Menco, Fredys
  • Rubio-Clemente, Ainhoa
  • Posada, Alejandro
  • Chica, Edwin

Abstract

This paper describes the use of the response surface methodology for the numerical optimization of the runner of a gravitational water vortex hydraulic turbine with a conical basin and a spiral inlet channel. The effect of the relative position of the runner (p), the number of blades (n), and the relation between the mean diameter of the blades (Db), and the diameter of the basin (D), (Db/D) on the efficiency of the turbine was evaluated, and the optimum runner was determined. A second-order regression model representing the efficiency of the turbine was developed. From this model, it was found that the highest efficiency of 65.18% was reached when all the independent variables were set to their higher values, i.e., Db/D, n, and p equal to 0.45, 6, and 0.6, respectively. Experiments were performed using the optimal runner (Db/D=0.45, n=6) and four values for p (0.4, 0.45, 0.50, and 0.55). It was not possible to test the optimal condition with p=0.6, due to the final quality of the acrylic model, the runner collided with the walls of the cone. The experimental efficiencies for the p values were 30.13, 38.35, 53.19, and 60.77%, respectively. According to the response model, these efficiencies correspond to 28.84, 40.46, 50.80, and 59.99%, respectively.

Suggested Citation

  • Velásquez, Laura & Romero-Menco, Fredys & Rubio-Clemente, Ainhoa & Posada, Alejandro & Chica, Edwin, 2024. "Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015914
    DOI: 10.1016/j.renene.2023.119676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.