IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015781.html
   My bibliography  Save this article

Experimental study of electric field enhancing the vapor production of the solar interfacial evaporator

Author

Listed:
  • Chen, Yanjun
  • Fu, Shijin
  • Tao, Qinghe
  • Liu, Xiuliang
  • Li, Changzheng
  • He, Deqiang

Abstract

Solar interfacial evaporation is a kind of clean and sustainable vapor production method, and previous researches commonly focus on the material and structure of evaporator. While, the wettability and heat transfer could be enhanced by the electric field. Herein, to improve the vapor production and solar energy utilization efficiency, a novel evaporator combined with electrodes is designed to couple the active regulation of electric field and solar interfacial evaporation. With the qualitative analysis in each electric field condition, vapor production is found to be profoundly improved by the electric field, which is considered to adjustably conduct a synergy of wettability, water transportation and phase change. Specifically, under the solar irradiation of 1 kW m−2, the net evaporation efficiency could be enhanced from 57.05% to 89.02%, and the evaporation rate could be significantly reinforced by 51% simultaneously. Through quantitatively evaluating the correlation between electric field strength and the enhancement, it is concluded that there exists an optimal electric field for evaporator on various circumstances. The present study has experimentally integrated the electric field regulative method and interfacial evaporation technology, which provides an innovative approach to optimize the vapor production of diverse evaporator and underlies the efficient utilization of solar energy.

Suggested Citation

  • Chen, Yanjun & Fu, Shijin & Tao, Qinghe & Liu, Xiuliang & Li, Changzheng & He, Deqiang, 2024. "Experimental study of electric field enhancing the vapor production of the solar interfacial evaporator," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015781
    DOI: 10.1016/j.renene.2023.119663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.