IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics096014812301577x.html
   My bibliography  Save this article

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Author

Listed:
  • de Queiroz Corrêa, Luiza
  • Bagnis, Diego
  • Rabelo Melo Franco, Pedro
  • Ferreira da Costa Junior, Esly
  • Oliveira Souza da Costa, Andréa

Abstract

Building-integrated photovoltaics play a key role in the reduction of greenhouse gases emission towards sustainability in the building and construction sector. Organic solar technology holds several advantages such as lightweight, flexibility and semitransparency, suiting well for this type of application. When integrated into windows and facades, it provides a dual benefit: it acts as a solar radiation barrier, improving indoor thermal comfort, while also generating off-grid power. Besides that, organic devices are known to be more efficient than traditional photovoltaics based in silicon in diffuse and low light conditions. Nevertheless, only a few studies have been conducted in the area employing large-area commercial modules, in real operational conditions and for a long-term period. This work has the purpose of reducing this gap and shine a light on this debate bringing an analysis based on real data of a set of organic panels laminated in glass in a vertical pioneer installation in Latin America. For this, several linear regression models were tested to predict the energy generation from meteorological data and solar position throughout four years of operation, and the best models developed achieved 0.76 and 0.81 values for R2 with validation data, respectively for simple and multiple regressions. A visual analysis showed that the OPV system produced more energy in winter due to lower solar altitude, despite lower global radiation levels. The most significant variables in the models were the global solar radiation and the solar altitude. The use of glass lamination and vertical orientation likely preserved the performance of the panels, keeping energy generation consistent over four years, akin to the first year.

Suggested Citation

  • de Queiroz Corrêa, Luiza & Bagnis, Diego & Rabelo Melo Franco, Pedro & Ferreira da Costa Junior, Esly & Oliveira Souza da Costa, Andréa, 2024. "Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301577x
    DOI: 10.1016/j.renene.2023.119662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301577X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301577x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.