IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015756.html
   My bibliography  Save this article

Multi-component multiphase lattice Boltzmann modeling of water purging during supercritical carbon dioxide extraction from geothermal reservoir pores

Author

Listed:
  • Tang, Youfei
  • Qiao, Zongliang
  • Cao, Yue
  • Si, Fengqi
  • Zhang, Chengbin

Abstract

Carbon dioxide becomes supercritical and purges subcritical liquid water in the rock channels as extracted from geothermal reservoir pores. A pseudopotential multi-component multiphase lattice Boltzmann method is presented to simulate the dynamic behavior of the water droplets under the purge of the supercritical carbon dioxide. The model is verified by thermodynamic consistency, surface tension independence regulation, the coexistence of the two components at different viscosities, and surface contact angle distribution laws. The results show that the stronger the hydrophobicity of the wall with uniform adhesion, the faster the motion of the droplet, and when the wall adhesion is not uniform, the stronger the hydrophobicity of the upstream, the faster the purge. When there are two droplets, the volume of the first one rapidly becomes larger because of the absorption of moisture and encounters enhanced shear force to obtain greater velocity. The second droplet receives the shear force weakened by the first, so its growth rate and movement do not change significantly and will gradually be caught up, leading to the coalescence of the two droplets. As the droplets move and grow, the obstruction to flow increases and the pressure drop will increase.

Suggested Citation

  • Tang, Youfei & Qiao, Zongliang & Cao, Yue & Si, Fengqi & Zhang, Chengbin, 2024. "Multi-component multiphase lattice Boltzmann modeling of water purging during supercritical carbon dioxide extraction from geothermal reservoir pores," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015756
    DOI: 10.1016/j.renene.2023.119660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.