IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015677.html
   My bibliography  Save this article

Using nitrogen starvation and excess phosphorus for two-stage algae cultivation to improve butanol production of lipid-extracted algae

Author

Listed:
  • Mao, Bifei
  • Li, Guanghao
  • Wang, Mingmei
  • Deng, Xiangyuan
  • Gao, Kun
  • Zhang, Bingcong

Abstract

Lipid-extracted algae (LEA) can be processed via acetone, butanol and ethanol fermentation to produce butanol as an additive to algal biofuel, but direct fermentation was ineffective. In this study, nitrogen and phosphorus regulation for algae cultivation was applied to modify the biochemical composition of algal biomass and hence improve butanol production from LEA. The results show that when nitrogen starvation and excess phosphorus were used during algae cultivation, a significant rise of starch productivity and decline of protein productivity for algal biomass were obtained, which resulted in the highest butanol productivity of 20.16 mg L−1 d−1, a 5.48-fold increase over traditional one-stage cultivation. Mechanism analysis suggested that nitrogen starvation enhanced lipid and starch contents and reduced protein content, which modified C/N ratio of LEA, prevented acid crash and improved butanol production; excess phosphorus modified amino acid contents of phenylalanine and arginine, which strengthened fluxes directing to butanol generation. Through this investigation, the approach of using nitrogen starvation and excess phosphorus to modify biochemical composition of algal biomass and subsequently improve butanol production of LEA was demonstrated to be applicable.

Suggested Citation

  • Mao, Bifei & Li, Guanghao & Wang, Mingmei & Deng, Xiangyuan & Gao, Kun & Zhang, Bingcong, 2024. "Using nitrogen starvation and excess phosphorus for two-stage algae cultivation to improve butanol production of lipid-extracted algae," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015677
    DOI: 10.1016/j.renene.2023.119652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.