IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015434.html
   My bibliography  Save this article

Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery

Author

Listed:
  • Yang, Wenlong
  • Jin, Chenchen
  • Zhu, Wenchao
  • Li, Yang
  • Zhang, Rui
  • Huang, Liang
  • Xie, Changjun
  • Shi, Ying

Abstract

Enhancing thermoelectric performance while minimizing exhaust back pressure is a crucial step in advancing the commercial viability of automotive thermoelectric generators. To achieve high overall performance in a thermoelectric generator, an annular thermoelectric generator equipped with circular pin fins is proposed. A comprehensive three-dimensional numerical model is established to accurately predict thermoelectric performance and thermomechanical behavior. Detailed multi-physics field distribution characteristics are analyzed. Using an L25 orthogonal array, we examine five influencing factors and their five levels: exhaust temperature, exhaust mass flow rate, fin height, fin diameter, and the number of fins. The Taguchi analysis suggests that exhaust temperature is the most influential factor in determining thermoelectric performance, followed by mass flow rate, fin height, fin diameter, and fin number. The optimal values for these parameters are 673 K, 30 g/s, 20 mm, 3 mm, and 420, respectively. Under the optimal design parameters, the net power reaches 34.11 W, representing an 18.7% increase compared to the original design. Moreover, a comparative study is conducted between plate fins and pin fins, showing that the pin fin-based thermoelectric generator exhibits a 5.83% increase in output power and a 4.82% increase in maximum thermal stress compared to the plate fin-based thermoelectric generator.

Suggested Citation

  • Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015434
    DOI: 10.1016/j.renene.2023.119628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.