IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015252.html
   My bibliography  Save this article

Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial neural network modeling

Author

Listed:
  • Dai, Ying
  • Sun, Meng
  • Fang, Hua
  • Yao, Huicong
  • Chen, Jianbiao
  • Tan, Jinzhu
  • Mu, Lin
  • Zhu, Yuezhao

Abstract

Co-combustion behaviors, performances, and kinetic parameters of binary and ternary blends of industrial sludge (IS), lignite (HL), and pine sawdust (SD) were investigated by thermogravimetric analysis, as well as interaction effects and artificial neural network (ANN) modeling. The measure of blending HL and SD into the IS would boost the ignition temperature, while decreased burnout temperature. For the binary blends of IS and HL, the combustion performance would be best with 30% HL ratio, and the combustible index (Ci), combustion stability index (G) and comprehensive combustibility index (CCI) were separately 7.57 × 10−5 %/min·°C2, 3.22 × 10−5 %/min·°C2, 1.39 × 10−7 %2/min2·°C3. With the SD ratio increasing, the combustion performance of the IS and SD blends, and ternary blends improved. It was observed that the interaction effects did exist during the co-combustion of the binary and ternary blends, which were beneficial for the IS combustion disposal. The combination of Coats-Redfern and Malek methods was utilized to the combustion kinetics analysis of blends. The combustion process of binary and ternary blends of IS, HL, and SD could be effectively predicted by the ANN model, and the regression coefficients of the training, validation, testing, and all of the ANN model were all 0.99996.

Suggested Citation

  • Dai, Ying & Sun, Meng & Fang, Hua & Yao, Huicong & Chen, Jianbiao & Tan, Jinzhu & Mu, Lin & Zhu, Yuezhao, 2024. "Co-combustion of binary and ternary blends of industrial sludge, lignite and pine sawdust via thermogravimetric analysis: Thermal behaviors, interaction effects, kinetics evaluation, and artificial ne," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015252
    DOI: 10.1016/j.renene.2023.119610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.