IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015082.html
   My bibliography  Save this article

Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)

Author

Listed:
  • Ge, Zhong
  • Wang, Xiaodong
  • Li, Jian
  • Xu, Jian
  • Xie, Jianbin
  • Xie, Zhiyong
  • Ma, Ruiqu

Abstract

Organic flash cycle is an important way to achieve geothermal power generation. Double-stage organic flash cycle (DOFC) has two flash processes, remarkably enhancing the heat matching effect of heat absorption process compared to single-stage type. Working fluid is an important factor influencing the performance superiority of DOFC. However, traditional organic fluids are being phased out due to environmental requirements, the new-type hydrofluoroolefins are emerging with good environmental performance. For new-type hydrofluoroolefins, the characteristics of DOFC are unclear and its advantages over single-stage type need to be quantified. This work evaluates the thermodynamic, exergy and economic performance of DOFC using ten eco-friendly hydrofluoroolefins. Influences of key parameters on thermodynamic and economic performance are analyzed. For hydrofluoroolefins, the superiorities of DOFC over single-stage type were quantitatively evaluated. Results show that the advantages of DOFC will become greater at the lower heat source temperature and the lower critical temperature of hydrofluoroolefins. R513A shows the greatest advantages of DOFC over single-stage type, and the maximum relative increment in the net power is 111.2 % and the maximum relative decrement in specific investment cost is 49.5 %. The optimum hydrofluoroolefin is R1366mzz(Z) with a net power of 348.29 kW and a specific investment cost of 7.88 k$·kW−1.

Suggested Citation

  • Ge, Zhong & Wang, Xiaodong & Li, Jian & Xu, Jian & Xie, Jianbin & Xie, Zhiyong & Ma, Ruiqu, 2024. "Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015082
    DOI: 10.1016/j.renene.2023.119593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.