IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014659.html
   My bibliography  Save this article

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Author

Listed:
  • Bracken, Cameron
  • Voisin, Nathalie
  • Burleyson, Casey D.
  • Campbell, Allison M.
  • Hou, Z. Jason
  • Broman, Daniel

Abstract

As we move towards a decarbonized grid, reliance on weather-dependent energy increases as does exposure to prolonged natural resource shortages known as energy droughts. Compound energy droughts occur when two or more predominant renewable energy sources simultaneously are in drought conditions. In this study we present a methodology and dataset for examining compound wind and solar energy droughts as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. Using a recently developed dataset of simulated hourly plant level generation which includes thousands of wind and solar plants, we examine the frequency, duration, magnitude, and seasonality of energy droughts at a variety of temporal and spatial scales. Results are presented for 15 Balancing Authorities (BAs), regions of the U.S. power grid where wind and solar are must-take resources by the power grid and must be balanced. Compound wind and solar droughts are shown to have distinct spatial and temporal patterns across the CONUS. BA-level load is also included in the drought analysis to quantify events where high load is coincident with wind and solar droughts. We find that energy drought characteristics are regional and the longest droughts can last from 16 to 37 continuous hours, and up to 6 days. The longest hourly energy droughts occur in Texas while the longest daily droughts occur in California. Compound energy drought events that include load are more severe on average compared to events that involve only wind and solar. In addition, we find that compound high load events occur more often during compound wind and solar droughts that would be expected due to chance. The insights obtained from these findings and the summarized characteristics of energy drought provide valuable guidance on grid planning and storage sizing at the regional scale.

Suggested Citation

  • Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014659
    DOI: 10.1016/j.renene.2023.119550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.