IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014507.html
   My bibliography  Save this article

Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources

Author

Listed:
  • Zhang, Ning
  • Yu, Yanghao
  • Wu, Jiawei
  • Du, Ershun
  • Zhang, Shuming
  • Xiao, Jinyu

Abstract

Under the worldwide carbon neutralization targets, concentrating solar power (CSP) is arousing great attention. With the thermal energy storage (TES), CSP is friendly to the power system operation by supplying controllable renewable energy. The capacities of its solar field and TES are essential parameters for maximizing the profit of a CSP plant. This paper formulates an explicit expression of the CSP plant's profit instead of using a simulation-based method. Then, an unconstrained optimization model is proposed to calculate its optimal configuration directly. This model provides insights into the optimal configuration of CSP with different penetrations of wind power in the case study. The results show that to obtain a better profit for the CSP plant, large solar multiple (more than 3.0) and TES (more than 13 h) are preferred to collaborate with high penetration of wind and photovoltaic plants. The effectiveness of the proposed method is verified compared to the enumeration searching method. The economy and feasibility of installing an electric heater (EH) in CSP are also demonstrated. Generally, the optimal investment in EH is linearly correlated to the penetration of variable energy resources.

Suggested Citation

  • Zhang, Ning & Yu, Yanghao & Wu, Jiawei & Du, Ershun & Zhang, Shuming & Xiao, Jinyu, 2024. "Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014507
    DOI: 10.1016/j.renene.2023.119535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.