IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics096014812301337x.html
   My bibliography  Save this article

Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance

Author

Listed:
  • Alkharusi, Tarik
  • Huang, Gan
  • Markides, Christos N.

Abstract

Photovoltaic (PV) module soiling, i.e., the accumulation of soil deposits on the surface of a PV module, directly affects the amount of solar energy received by the PV cells in that module and has also been suggested as a mechanism that can give rise to additional heating, leading to significant power generation losses or even physical degradation, damage and lifetime reduction. Investigations of PV soiling are challenging and limited. We present results from an extensive outdoor experimental testing campaign of soiling, apply detailed characterisation techniques, and consider the resulting losses. Soil from sixty low-iron glass coupons was collected at various tilt angles over a study period of 12 months to capture monthly, seasonal and annual variations. The coupons were exposed to outdoor conditions to mimic the upper surface of PV modules. Transmittance measurements showed that the horizontal coupons experienced the highest degree of soiling. The horizontal wet-season, dry-season and full-year samples experienced a relative transmittance decrease of 62 %, 66 %, and 60 %, respectively, which corresponds to a predicted relative decrease of 62 %, 66 %, and 60 % in electrical power generation. An analysis of the soiling matter using an X-ray diffractometer and a scanning electron microscope showed the presence of particulate matter with diameters <10 μm (PM10), which was the most prevalent in the studied region. The findings of this study lay the groundwork for research into soiling mitigation practices.

Suggested Citation

  • Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301337x
    DOI: 10.1016/j.renene.2023.119422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301337X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s096014812301337x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.