IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123013976.html
   My bibliography  Save this article

Fast time-domain model for the preliminary design of a wave power farm

Author

Listed:
  • Stavropoulou, Charitini
  • Goude, Anders
  • Katsidoniotaki, Eirini
  • Göteman, Malin

Abstract

This study presents a novel, fast time-domain model developed for an array of interacting point-absorber wave energy converters. The model is validated using experimental wave tank data. The point-absorbers, based on Uppsala University’s design, are arranged in a symmetric grid and interact with scattered and radiated waves while constrained to the heave motion. The model employs linear potential flow theory to solve the hydrodynamic coefficients in the frequency domain and employs Cummins’ formulation to solve the equations of motion in the time domain. Modeling an array of wave energy converters in the time domain yields a system of integro-differential equations, featuring convolution terms in the excitation and radiation forces. This implies that past waves radiated by the body continue to impact future dynamics. Irregular long-crested waves, generated from the Bretschneider spectrum, serve as the incident waves for the study. The model’s accuracy in capturing the dynamics and power absorption of the farm is demonstrated through validation against experimental data from a 1:10 scaled prototype of a six-point-absorber array. Despite inherent differences between the experimental and numerical set-ups, the model accurately represents the farm’s behavior. Furthermore, an efficiency test reveals that the numerical scheme approximates the performance of wave power farms comprising 6, 12, 24, 48, and 96 interacting devices within a maximum computational time of 20 s. Overall, this research presents a novel and accurate time-domain model for analyzing an array of point-absorber wave energy converters. The model’s ability to capture the dynamics and power absorption, along with its efficiency in simulating larger wave power farms, make it a valuable tool for the preliminary design stage.

Suggested Citation

  • Stavropoulou, Charitini & Goude, Anders & Katsidoniotaki, Eirini & Göteman, Malin, 2023. "Fast time-domain model for the preliminary design of a wave power farm," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123013976
    DOI: 10.1016/j.renene.2023.119482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123013976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.