IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012715.html
   My bibliography  Save this article

Development and neural network optimization of a renewable-based system for hydrogen production and desalination

Author

Listed:
  • Balali, Adel
  • Asadabadi, Mohammad Javad Raji
  • Mehrenjani, Javad Rezazadeh
  • Gharehghani, Ayat
  • Moghimi, Mahdi

Abstract

This study introduces an integrated system based on geothermal and solar energy to provide useful products such as electricity, freshwater, and hydrogen. In the proposed system, a solar unit including parabolic trough collectors has been used to improve the performance of the system and increase the mentioned products. The low-temperature geothermal stream returns to the ground after passing through a thermoelectric generator unit. A combination of Rankine and organic Rankine cycles is used to supply electricity and run the water electrolysis unit. This study aims to address the inefficient heat recovery in a combined solar and geothermal resource system by utilizing waste heat to generate clean hydrogen. A parametric study and sensitivity analysis are considered to investigate the effect of design parameters on the main outputs of the system. After evaluating the system from energy, exergy, and economic perspectives, a multi-objective optimization process with a combination of artificial neural network and genetic algorithm was performed on the system. The optimization problem is divided into two cases (scenarios). Each case considers energy efficiency and total cost rate as objective functions. In addition, hydrogen and freshwater production rates are considered as the third objective function in cases A and B, respectively. The optimization results showed that in case A, the optimal values of exergy efficiency, hydrogen production, and total cost rate are 15.54%, 6.18 kg/h, and 85.9 $/h, respectively. Also, in case B, values of 15.09%, 3527.79 kg/h, and 89.44 $/h are calculated for exergy efficiency, freshwater production, and total cost rate, respectively. A case study conducted in Tehran revealed that the peak production of various products is observed in May, which leads to the production of 623.14 kW of electricity, 5.35 kg/h of hydrogen, and 1948.9 kg/h of freshwater in the base condition.

Suggested Citation

  • Balali, Adel & Asadabadi, Mohammad Javad Raji & Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Moghimi, Mahdi, 2023. "Development and neural network optimization of a renewable-based system for hydrogen production and desalination," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012715
    DOI: 10.1016/j.renene.2023.119356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.