IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012259.html
   My bibliography  Save this article

Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices

Author

Listed:
  • Zhao, Zhigao
  • Chen, Fei
  • Gui, Zhonghua
  • Liu, Dong
  • Yang, Jiandong

Abstract

Digitalization and intellectualization of energy system require the fault information of energy conversion devices to be captured as accurately as possible from the massive data, so as to realize early fault alert. However, the comprehensiveness of feature extraction, the setting difficulty of model parameters and applicability of various scenarios have shortcomings by conventional methods, leading to their limitations in measured signals with multi-source and multi-feature information. Therefore, this paper exploits a quantitative diagnostic method named refined composite hierarchical multiscale Lempel-Ziv complexity (RCHMLZC). Firstly, the enhanced hierarchical decomposition and multiscale Lempel-Ziv complexity (MLZC) are coupled to develop hierarchical multiscale Lempel-Ziv complexity (HMLZC), which overcomes the drawback of MLZC that cannot quantify the complexity of signals at different frequencies. Secondly, RCHMLZC is proposed to solve the problem that LZC value of HMLZC fluctuates greatly under high scale factors, and then is used to extract the features of vibration signals. Finally, the extracted features are input into the random forests model to realize the efficient recognition of different status signals of rotating energy devices. A total of 14 types of multi-feature fault signals from bearings, shafting and runner are used to verify the reliability and superiority of the proposed method. Compared to the five conventional models, the comprehensive indicators of the proposed method for bearing fault experiments are improved by 1.549%, 4.637%, 14.153%, 20.242% and 22.112%, while the values for the shafting fault experiments are improved by 0.404%, 0.427%, 2.778%, 2.722% and 5.895%. In addition, the proposed method is applied to the analysis of the fault cases of hydraulic turbine, demonstrated the ability to zero miscalculation. It would be a helpful tool to improve energy conversion efficiency and reduce maintenance cost.

Suggested Citation

  • Zhao, Zhigao & Chen, Fei & Gui, Zhonghua & Liu, Dong & Yang, Jiandong, 2023. "Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012259
    DOI: 10.1016/j.renene.2023.119310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.