IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012211.html
   My bibliography  Save this article

Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings

Author

Listed:
  • Patel, Bhaskar
  • Rathore, Pushpendra Kumar Singh
  • Gupta, Naveen Kumar
  • Sikarwar, Basant Singh
  • Sharma, R.K.
  • Kumar, Rajan
  • Pandey, A.K.

Abstract

Improving Thermal Energy Storage (TES) of buildings using Phase Change Material (PCM) is widely used to develop energy efficient building envelope. In this study, optimum location of PCM, thermal insulation, and air were investigated in a concrete block to improve indoor thermal comfort of the building. A comparative study of six Thermal Efficient Concrete Block (TECB-1, TECB-2, TECB-3, TECB-4, TECB-5, and TECB-6), having three slots each, embedded with PCM, PU Foam, and air in varying order was conducted to identify the optimum location of PCM for improving indoor thermal performance. Additionally, TES characteristics and thermal stability of PCM were also evaluated. TECB-4 and TECB-5 obtained a time lag of 127.5 min and 125 min respectively in comparison with TECB-0. Maximum average percentage reduction of 12.5% in indoor peak temperature and lowest average thermal amplitude of 13.4 °C was shown by TECB-5. The temperature profiling of indoor surfaces validates the improved thermal behaviour of TECB-4 and TECB-5. This study signifies that optimum location of using PCM, PU Foam, and air in the building concrete block is PCM on outer side, PU Foam on inner side, and air in middle for improving indoor thermal performance of buildings in tropical climates.

Suggested Citation

  • Patel, Bhaskar & Rathore, Pushpendra Kumar Singh & Gupta, Naveen Kumar & Sikarwar, Basant Singh & Sharma, R.K. & Kumar, Rajan & Pandey, A.K., 2023. "Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012211
    DOI: 10.1016/j.renene.2023.119306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.