IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012089.html
   My bibliography  Save this article

Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models

Author

Listed:
  • Anagnostopoulos, Sokratis J.
  • Bauer, Jens
  • Clare, Mariana C.A.
  • Piggott, Matthew D.

Abstract

Wind farm modelling is an area of rapidly increasing interest with numerous analytical and computational-based approaches developed to extend the margins of wind farm efficiency and maximise power production. In this work, we present the novel ML framework WakeNet, which reproduces generalised 2D turbine wake velocity fields at hub-height, with a mean accuracy of 99.8% compared to the solution calculated by the state-of-the-art wind farm modelling software FLORIS. As the generation of sufficient high-fidelity data for network training purposes can be cost-prohibitive, the utility of multi-fidelity transfer learning has also been investigated. Specifically, a network pre-trained on the low-fidelity Gaussian wake model is fine-tuned in order to obtain accurate wake results for the mid-fidelity Curl wake model. The overall performance of WakeNet is validated on various wake steering control and layout optimisation scenarios, obtaining at least 90% of the power gained by the FLORIS optimiser. Moreover, the Curl-based WakeNet provides similar power gains to FLORIS, two orders of magnitude faster. These promising results show that generalised wake modelling with ML tools can be accurate enough to contribute towards robust real-time active yaw and layout optimisation under uncertainty, while producing realistic optimised configurations at a fraction of the computational cost.

Suggested Citation

  • Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089
    DOI: 10.1016/j.renene.2023.119293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.