IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011874.html
   My bibliography  Save this article

Temperature reduction and energy-saving analysis in grain storage: Field application of radiative cooling technology to grain storage warehouse

Author

Listed:
  • Xu, Weiping
  • Gong, Sihong
  • Wang, Ningsheng
  • Zhao, Wenbo
  • Yin, Hongle
  • Yang, Ronggui
  • Yin, Xiaobo
  • Tan, Gang

Abstract

Radiative cooling technology dissipates heat to outer space through the atmospheric window. A radiative cooling membrane possessing spectrum-selective optical properties has been installed on the grain storage warehouses in Hangzhou, China for a field testing. The long-term measurement results show notable decreases in headspace temperature and grain temperature by as much as 9.8 °C and 4 °C, respectively. A building model is created with measurement data and extended to seven grain storage ecological zones to assess potential electricity savings and temperature reductions without air conditioning. For cases with air conditioners, a total electricity saving of 573 GWh/yr is expected if applied nationwide. Without air conditioners, the temperature could decrease by 5.1–9.9 °C and 3.8–6.9 °C for headspace and grain respectively when ambient temperature exceeds 25 °C, thus upgrading the grain storage levels in different grain storage ecological zones. The linear correlation between the cooling-degree-day values set at 18 °C and the electricity consumption was developed, and extended to a global map. It reveals that in areas with values less than 1000 °C d, radiative cooling technology can maintain quasi-low storage temperatures, eliminating the need for air conditioning.

Suggested Citation

  • Xu, Weiping & Gong, Sihong & Wang, Ningsheng & Zhao, Wenbo & Yin, Hongle & Yang, Ronggui & Yin, Xiaobo & Tan, Gang, 2023. "Temperature reduction and energy-saving analysis in grain storage: Field application of radiative cooling technology to grain storage warehouse," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011874
    DOI: 10.1016/j.renene.2023.119272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.