IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011849.html
   My bibliography  Save this article

Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope

Author

Listed:
  • Huang, Xinyu
  • Li, Fangfei
  • Liu, Zhengguang
  • Gao, Xinyu
  • Yang, Xiaohu
  • Yan, Jinyue

Abstract

The building envelope is of great significance for building thermal comfort, and photovoltaic heat (PV/T) can be effectively utilized through phase change heat storage technology to reduce heating energy consumption. In this paper, a phase change heat storage structure with subzone rotation is proposed for the building envelope. A numerical model of a triplex-tube LHTES unit is established by using the enthalpy-porosity method and verified by experimental data. The study employs the Taguchi method to select rotation speed in different regions and fin/tube wall material as variables. The effects of different variables on heat release rate and solidification time are investigated, and the interaction of each parameter on solidification performance is analyzed through signal-to-noise ratio. The findings indicate that when the inner and outer tube speeds are 0.3 rpm and 0.5 rpm, respectively, compared to the initial model where both inner and outer tube speeds are 0.1 rpm, the average temperature response rate and the average heat release rate are increased by 51.47% and 61.04%, respectively. Meanwhile, the solidification time is shortened by 40.49%. However, the release of the total heat is reduced by 0.66%. The study concludes that increasing rotation speed or solidification consistency of PCM in different areas is of great value in enhancing overall solidification performance. Finally, the specific effect of increasing regional rotation speed on the solidification process is studied through temperature/flow rate monitoring in the unit.

Suggested Citation

  • Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011849
    DOI: 10.1016/j.renene.2023.119269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.