IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011813.html
   My bibliography  Save this article

Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model

Author

Listed:
  • Li, Bohan
  • Wang, Chaoyang
  • Liu, Ming
  • Fan, Jianlin
  • Yan, Junjie

Abstract

Solid oxide fuel cell (SOFC) is a promising power technology, which has the attributes of clean, high efficiency, and high flexibility. In this research, a 3D-dynamic model of a planar SOFC was established and experimentally verified. Based on the developed model, the dynamic response characteristics of SOFC are investigated after every step change in the inlet gas temperature, inlet gas flow, and output voltage. For the output voltage of 0.9V, 0.7V, and 0.6V, the power density varies by +13.6%/-16.7%, +11.0%/-15.3%, and +5.1%/-9.7%, respectively, against every increase/decrease the inlet gas temperature by 100 K. The response processes of the power density to the changes in both inlet gas flow and output voltage are divided into fast-response and slow-response stages. The power density changes in these two stages can be attributed to the change in reactant concentration within the functional layers (fast-response stage) and the slow evolution of cell temperature (slow-response stage), respectively. Subsequently, four control strategies are employed to increase/decrease the power density by 20%. The comparative results show that the integrated control strategy of changing multiple operating parameters simultaneously can reduce the change range of a single controlled parameter, thereby improving the power regulating capability and increasing the regulating speed.

Suggested Citation

  • Li, Bohan & Wang, Chaoyang & Liu, Ming & Fan, Jianlin & Yan, Junjie, 2023. "Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011813
    DOI: 10.1016/j.renene.2023.119266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.