IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011801.html
   My bibliography  Save this article

Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach

Author

Listed:
  • Gür, Muhammed
  • Öztop, Hakan F.
  • Selimefendigil, Fatih

Abstract

This study focuses on the design of a solar-assisted underfloor heating system specifically tailored for nearly zero-energy buildings. The system incorporates a Photovoltaic/Thermal (PV/T) collector as the primary heat source. The analysis takes into account the geographical coordinates of Elazig province in Turkey, and the boundary conditions are carefully chosen as the inlet parameters in the program. To enhance the system's performance, Nano-enhanced Phase Change Material (PCM) is utilized by filling pockets around the underfloor heating pipe with varying thicknesses. Cu nanoparticles of 1% solid volume fraction is considered. The fundamental objective of this approach is to achieve room temperature without any additional energy consumption during nighttime periods when solar radiation is unavailable. To investigate the impact of the system, copper nanoparticles are introduced to the PCM, and their effects on room temperature are numerically analyzed using the finite volume method under turbulent flow conditions. Realistic building conditions are considered, and a container is selected as the scenario building for simulations. The results reveal that the best room temperature conditions are obtained with pure PCM of width k (Case 1), pure PCM of width k/2 (Case 3), PCM with nanoparticle added of width k/2 (Case 3), and no PCM (Case 4), respectively. The highest temperature difference of 4 K is obtained between the configurations of Case 1 and Case 4 which shows the favorable impacts of using PCM. However, between the cases of using nano-PCM and PCM, room temperature difference of 0.1 K is obtained which indicates the very slight improvement of using nano-powders in PCM for this energy system. These findings provide valuable insights into the design and optimization of solar-assisted underfloor heating systems for nearly zero-energy buildings, offering the potential to improve energy efficiency and thermal comfort.

Suggested Citation

  • Gür, Muhammed & Öztop, Hakan F. & Selimefendigil, Fatih, 2023. "Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011801
    DOI: 10.1016/j.renene.2023.119265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.