IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011783.html
   My bibliography  Save this article

Building envelope-enhanced phase change material and night ventilation: Effect of window orientation and window-to-wall ratio on indoor temperature

Author

Listed:
  • Al-Yasiri, Qudama
  • Alktranee, Mohammed
  • Szabó, Márta
  • Arıcı, Müslüm

Abstract

Integrating phase change material (PCM) and natural night ventilation (NNV) has notably improved building indoor thermal comfort in hot locations. The current study investigates the role of NNV through a window to improve the indoor temperature of a PCM room, considering the window orientation and window-to-wall ratio (WWR). The NNV was employed through a one-sided window of the PCM room to enumerate the advantages of passive building technologies in summer. Different window orientations and WWRs (between 8.75% and 20%) were analysed to improve the indoor environment using an experimentally validated model developed by EnergyPlus software. Numerical findings exhibited that the window orientation has a minimal effect on the NNV of the PCM room regardless of wind direction. However, the Northeast orientation was the best case for the studied location, achieving average indoor temperature reduction by up to 31%, and a thermal load levelling reduction by 9%–17%. Furthermore, the larger window size exhibited improved thermal comfort, where the WWR of 20% decreased the average indoor temperature by 1.14 °C more than the reference PCM room of WWR = 8.75% without ventilation. Besides, the operative temperature at the largest window size was reduced by up to 22% during nighttime. The study concluded that the effectiveness of NNV is limited under severe hot locations, and alternative cooling means could be advantageous.

Suggested Citation

  • Al-Yasiri, Qudama & Alktranee, Mohammed & Szabó, Márta & Arıcı, Müslüm, 2023. "Building envelope-enhanced phase change material and night ventilation: Effect of window orientation and window-to-wall ratio on indoor temperature," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011783
    DOI: 10.1016/j.renene.2023.119263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.