IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011746.html
   My bibliography  Save this article

A glare predictive control strategy for split-pane electrochromic windows: Visual comfort and energy-saving assessment

Author

Listed:
  • Sun, Yuying
  • Li, Yunhe
  • Xu, Wenjing
  • Wang, Wei
  • Wei, Wenzhe
  • Zhang, Chunxiao

Abstract

Split-pane electrochromic (EC) windows enable the control of glare and the effective utilization of sunlight by adjusting the color of individual window panes. However, existing EC control methods are often limited to specific cases or require extensive simulation work, resulting in a deficiency of generic control approaches. To solve this issue, this paper proposed a novel approach to EC window zoning control based on glare prediction. This method evaluated real-time discomfort glare for each EC window pane and effectively adjusted the tinting state of the split panes to mitigate glare. A typical office setting in Beijing was selected to simulate the impact of utilizing this method on the light environment and energy conservation. The simulation results demonstrate that this approach could effectively keep the discomfort glare probability (DGP) below 0.4, which belongs to perceptible glare. Compared to EC whole window control, it reduced the tinting area multiplier hours by 63.64%–71.43%, managed UDI values within the range of 40%–90%, and reduced lighting energy consumption by over 40.98%. The results confirmed the accuracy of the proposed method in glare control, the improvement of the lighting environment, and the significant reduction in lighting energy consumption, enhancing its substantial energy-saving potential.

Suggested Citation

  • Sun, Yuying & Li, Yunhe & Xu, Wenjing & Wang, Wei & Wei, Wenzhe & Zhang, Chunxiao, 2023. "A glare predictive control strategy for split-pane electrochromic windows: Visual comfort and energy-saving assessment," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011746
    DOI: 10.1016/j.renene.2023.119259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.