IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011412.html
   My bibliography  Save this article

A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries

Author

Listed:
  • Kong, Weihua
  • He, Liujin
  • Hao, Daning
  • Wu, Xiaoping
  • Xiao, Luo
  • Zhang, Zutao
  • Xu, Yongsheng
  • Azam, Ali

Abstract

This paper proposes a nodding-duck wave energy harvester with coaxial contra-rotating power take-off based on the ultra-low frequency synergistic principle to solve the self-powered problems in intelligent fisheries. The design and working principle of nodding-duck wave energy harvester are described in detail, and the coaxial contra-rotating disengagement-engagement coupling model of nodding-duck wave energy harvester is established based on the ultra-low frequency synergistic principle. A dry bench test, charging test and water flume test were performed to evaluate the performance of the nodding-duck wave energy harvester. Dry bench experimental results show that the integrated disengagement ratio of the device can be increased by increasing the excitation frequency and amplitude and can achieve a maximum voltage output of 24.1 V and average power of 210.5 mW by sinusoidal wave excitation of 1 Hz and swing angle of 5π/12. The water flume experiment is used as supportive evidence to demonstrate the power supply performance of the device. Different analyses proved that the device had the potential to supply energy effectively for intelligent fishery sensors.

Suggested Citation

  • Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011412
    DOI: 10.1016/j.renene.2023.119226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.