IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011163.html
   My bibliography  Save this article

Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent

Author

Listed:
  • Xiao, Liye
  • Zheng, Canyang
  • Shi, Kuang
  • Chen, Fei

Abstract

Solar CPC (Compound Parabolic Concentrator, CPC) has a limited ability to collect solar radiation at the top of the reflection surface, and the energy flux distribution on the absorber surface is not uniform. The paper presents an optimized model of N-CPC (No-Gap Escape CPC, N-CPC) that is constructed through critical truncation and multi-section congruent, and the model parameters are determined using the principle of non-imaging optical edge rays, and the theoretical reliability and optical performance are verified through laser experiments and simulation analysis. The research results show that compared with N-CPC with an equivalent geometrical concentration ratio, O-CPC (Optimized CPC, O-CPC) effectively enhances the acceptable range of incident rays, with an average optical efficiency of 40.60%, which beam radiation collection is increased by 3.06% and diffuse radiation collection is increased by 38.92%, effectively reducing the peak energy flux distribution. Combined with economic analysis, O-CPC has a broader application prospect.

Suggested Citation

  • Xiao, Liye & Zheng, Canyang & Shi, Kuang & Chen, Fei, 2023. "Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011163
    DOI: 10.1016/j.renene.2023.119201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.