IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011151.html
   My bibliography  Save this article

Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins

Author

Listed:
  • Tavakoli, Ali
  • Hashemi, Javad
  • Najafian, Mahyar
  • Ebrahimi, Amin

Abstract

Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corrugated fins is studied. Employing a physics-based model, the influence of fin length, thickness, and wave amplitude on the thermal and fluid flow fields is explored. Incorporating fins into thermal energy storage systems enhances the heat transfer surface area and thermal penetration depth, accelerating the melting process. Corrugated fins generate more flow perturbations than straight fins, improving the melting performance. Longer and thicker fins increase the melting rate, average temperature, and thermal energy storage capacity. However, the effect of fin thickness on the thermal characteristics seems insignificant. Larger fin wave amplitudes increase the heat transfer surface area but disrupt natural convection currents, slowing the melting front progress. A surrogate model based on an artificial neural network in conjunction with the particle swarm optimisation is developed to optimise the fin geometry. The optimised geometry demonstrates a 43% enhancement in thermal energy storage per unit mass compared to the case with planar fins. The data-driven model predicts the liquid fraction with less than 1% difference from the physics-based model. The proposed approach provides a comprehensive understanding of the system behaviour and facilitates the design of thermal energy storage systems.

Suggested Citation

  • Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011151
    DOI: 10.1016/j.renene.2023.119200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.