IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010856.html
   My bibliography  Save this article

Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage

Author

Listed:
  • Xiang, Yutong
  • Gao, Meng
  • Furbo, Simon
  • Fan, Jianhua
  • Wang, Gang
  • Tian, Zhiyong
  • Wang, Dengjia

Abstract

Pit thermal energy storage (PTES) is an efficient renewable energy storage technology widely used in large-scale solar district heating systems. Accurate modeling of mixing in a PTES due to inlet flow is key in calculating heat storage performance. However, the commonly used one-dimensional PTES models fail to consider inlet mixing due to the three-dimensional nature of the mixing flow. This research adopts a three-dimensional model to analyze the dynamic behavior of inlet mixing inside the PTES. The model is validated against measurements of the Dronninglund PTES. To quantify the inlet mixing impact, two performance indicators (i.e., the penetration height (Z) and the energy distribution ratio (ηj)) are proposed. The parametric analysis revealed that Z is more dependent on the Reynold (Re) number than the Froude (Fr) number, while both the Re and Fr numbers influence ηj. According to the dimensional theory, the penetration height Z shows a power-law relation with time. For the energy distribution ratio ηj, a power-law relation with time is seen, although an asymptotic formula is needed in the region of a negative buoyancy jet. Finally, the inflow mixing inside the PTES is characterized under various operating conditions by empirical correlations. The results of this study could be used to improve the current one-dimensional heat storage models in terms of inlet mixing.

Suggested Citation

  • Xiang, Yutong & Gao, Meng & Furbo, Simon & Fan, Jianhua & Wang, Gang & Tian, Zhiyong & Wang, Dengjia, 2023. "Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010856
    DOI: 10.1016/j.renene.2023.119170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.