IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010819.html
   My bibliography  Save this article

Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting

Author

Listed:
  • Seo, Junyong
  • Choi, Minwoo
  • Yoon, Siwon
  • Lee, Bong Jae

Abstract

The potential of radiative cooling (RC) technology to passively and sustainably harvest cold energy has received a lot of interest. Since RC surface is installed outdoors for the long term and operates under time-varying environmental conditions, photonic structures constructing the RC surface need to be carefully designed based on proper theoretical modeling. However, a theoretical model for accumulated cooling performance that reflects environmental factors was scarcely developed for photonic structure design. This paper presents a more practical approach for estimating RC performance as an accumulated cold energy production (ACEP). ACEP stands for the time integration of cooling power, which is modeled to comprehensively account for a wide range of time-dependent environmental factors, including mostly neglected cloud coverage as well. The realistic performance of an RC surface at any location on Earth can be estimated without conducting any experiments. Utilizing the benefits of ACEP, photonic structures are separately optimized for 15 different locations with different climates. As a result, the universal optimum for all climates achieves 2 to 4 percent greater ACEP than the conventionally driven optimum. Based on the optimized results, we have developed a strategy for selecting radiative cooling structures based on regional climate conditions utilizing ACEP as a guiding metric. Furthermore, the impact of each environmental factor on RC performance is investigated by analyzing the ACEP components.

Suggested Citation

  • Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010819
    DOI: 10.1016/j.renene.2023.119166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.