IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010753.html
   My bibliography  Save this article

Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions

Author

Listed:
  • Liu, Benxi
  • Liu, Tengyuan
  • Liao, Shengli
  • Lu, Jia
  • Cheng, Chuntian

Abstract

With the large-scale integration of wind and solar power in China, the consumption of these intermittent renewable energies is severely restricted by the capacity of the transmission channel, which leads to massive renewable energy curtailment. Therefore, it would be beneficial to use limited transmission channels to absorb as much renewable energy as possible. In this paper, we propose a chance constraint-based multistage nested hydro-wind-solar coordinated optimal scheduling model to aid peak shaving while ensuring maximum power generation. First, multistage partitioned section chance constraints are introduced to mitigate the power congestion of the transmission network. Then, based on the principle of using hydropower to complement the uncertainty of wind and solar power, the compensation chance constraints are considered. To quantify the uncertainty of wind and solar power, their prediction errors are analyzed using the Gaussian mixture model. Finally, the model is recast and linearized into a mixed integer linear programming model. A case study of a hydro-wind-solar base in Southwest China demonstrates that the proposed model can effectively leverage the regulation ability of hydropower to coordinate multiple power sources with the restrictions of multistage transmission sections, effectively alleviating the congestion of transmission channels and reducing the curtailment of renewable energy.

Suggested Citation

  • Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010753
    DOI: 10.1016/j.renene.2023.119160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.