IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010698.html
   My bibliography  Save this article

Environment-friendly efficient thermal energy storage paradigm based on sugarcane-derived eco-ceramics phase change composites: From material to device

Author

Listed:
  • Liu, Xianglei
  • Ni, Renzhong
  • Tian, Yang
  • Yao, Haichen
  • Xu, Qiao
  • Xuan, Yimin

Abstract

Latent heat thermal energy storage (LHTES) technology can well alleviate the imbalance between intermittent energy supply and demand. However, the low thermal conductivity and poor shape stability of phase change materials (PCMs) seriously limit their practical applications. Here, sugarcane-derived biomimetic SiC ceramics are proposed for fast and efficient thermal energy storage. After loading paraffin, the composite phase change materials (CPCMs) demonstrate a high thermal conductivity of 10.34 W/mK and a high energy density of 151.20 kJ/kg at a porosity of 85%, outperforming state-of-the-art ceramics-based CPCMs. This benefits from continuous SiC skeletons composed of tightly stacked grains, so that both boundary and contact thermal resistances are reduced even at a high porosity. No prominent decay of thermal conductivity and energy storage density after 500 charging-discharging cycles, as well as good leakage resistance, confirm the good cyclic stability of proposed CPCMs. High-performance CPCMs are further packed into a fixed-bed LHTES device and investigated both experimentally and numerically. The melting time of LHTES device is prominently reduced by 44.3% benefiting from synergy of high thermal conductivity and non-coaxial arrangement of packed CPCMs cells. This work opens a new route for rapid thermal energy storage based on sugarcane-derived biomimetic materials.

Suggested Citation

  • Liu, Xianglei & Ni, Renzhong & Tian, Yang & Yao, Haichen & Xu, Qiao & Xuan, Yimin, 2023. "Environment-friendly efficient thermal energy storage paradigm based on sugarcane-derived eco-ceramics phase change composites: From material to device," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010698
    DOI: 10.1016/j.renene.2023.119155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.