IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010650.html
   My bibliography  Save this article

Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow

Author

Listed:
  • Liu, Zichu
  • Quan, Zhenhua
  • Zhao, Yaohua
  • Zhang, Wanlin
  • Yang, Mingguang
  • Shi, Junzhang

Abstract

In this paper, bubble-driven flow mechanism is applied to an ice thermal storage device based on micro heat pipe arrays. A visual experimental system is established to investigate the effect of bubble-driven flow on the performance of proposed device. The temperature distribution of water/ice, charging/discharging time, charging/discharging power, real-time phase change behaviors and phase change rate without bubble injection and at different bubble flow rates are compared. Based on without bubble injection, the temperature uniformity are significantly promoted by 57.14% and 56.07% in the sensible heat charging/discharging stage, while the improvement of the latent heat charging/discharging stage is not obvious. In addition, the negative effect of bubble-driven flow in the latent heat charging stage is greater than the positive effect in the sensible heat charging stage, thereby the charging time increases by 19.46%, and the charging power decreases by 17.91%. However, bubble-driven flow is positive for the entire discharging process, especially for the latent heat discharging stage, bubbles boost the decomposition of ice layer, the discharging time decreases by 20%, and the discharging power raises by 31.07%. Therefore, the operation strategy of turning on bubble driven-flow during the discharging process and turning it off during the charging process is recommended.

Suggested Citation

  • Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang, 2023. "Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010650
    DOI: 10.1016/j.renene.2023.119151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.