IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010406.html
   My bibliography  Save this article

A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning

Author

Listed:
  • Cruz-Rojas, Tonatiuh
  • Franco, Jesus Alejandro
  • Hernandez-Escobedo, Quetzalcoatl
  • Ruiz-Robles, Dante
  • Juarez-Lopez, Jose Manuel

Abstract

The reduction in photovoltaic (PV) panel efficiency is a significant concern, especially for the photovoltaic power stations (PPS) near different soil types and a high wind presence. A relevant interest has emerged in developing systems capable of recognizing and evaluating the state of PV panels without human intervention. This work analyzes three different approaches to address this problem using semantic segmentation. The first approach employs unsupervised learning, while the second utilizes supervised learning, applying Machine Learning techniques such as K-means, Gaussian Mixture Models, Random Forest, and Light GBM, as well as more rudimentary options like histogram segmentation and color spaces. The final approach utilizes Deep Learning models, testing different versions of the U-net architecture primarily designed for image segmentation tasks. The results showcase the model's performance in terms of accuracy, processing and training time, F1 Score, and Intersection over Union. It was observed that supervised models with Machine Learning algorithms achieved a perfect balance between performance and speed. On the other hand, the Deep Learning approach proved more effective when the input was not standardized and the image format was poorly defined.

Suggested Citation

  • Cruz-Rojas, Tonatiuh & Franco, Jesus Alejandro & Hernandez-Escobedo, Quetzalcoatl & Ruiz-Robles, Dante & Juarez-Lopez, Jose Manuel, 2023. "A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010406
    DOI: 10.1016/j.renene.2023.119126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.