IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010297.html
   My bibliography  Save this article

Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology

Author

Listed:
  • Zhang, Yun
  • Zhang, Chuanbiao
  • Li, Wenjuan
  • Xiao, Qiuping
  • Jiao, Fengyuan
  • Xu, Sen
  • Lan, Yanhua
  • Fu, Yizheng
  • Shu, Chi-Min
  • Cao, Weiguo

Abstract

Stearic acid provides a basis for developing renewable energy, such as solar energy and biomass energy. A thermogravimetric-infrared spectroscopy (TG-IR) experimental test is conducted to obtain the thermal decomposition progress and the main gaseous products of stearic acid. The result shows that small gaseous products (H2O, CO2, CO, alkanes, olefins, etc.) are released. Furthermore, the method of reactive molecular dynamics simulation (ReaxFF-MD) is utilized to look into the pyrolysis reaction mechanism of stearic acid. The main pyrolysis products of stearic acid received by ReaxFF-MD are C2H4, H2, C2H2, CH4, H2O, CO2, and CO, consisting of the result of the TG-IR test. The effect of the simulated system density and temperature on the distribution of main products is also explored. Also, the thermal kinetic analysis is conducted by the initial consumption of stearic acid under different temperatures. The primary reaction mechanism of stearic acid pyrolysis is that the stearic acid molecules dissociate through C–C bonds break to generate C2H4, CH4, C2H2, C3H6, and other small molecules and radicals, and a typical reaction mechanism scheme of stearic acid pyrolysis is presented. The results provide a reference for explaining the macroscopic explosion characteristics of dust at the microscopic mechanism level.

Suggested Citation

  • Zhang, Yun & Zhang, Chuanbiao & Li, Wenjuan & Xiao, Qiuping & Jiao, Fengyuan & Xu, Sen & Lan, Yanhua & Fu, Yizheng & Shu, Chi-Min & Cao, Weiguo, 2023. "Reaction mechanism of stearic acid pyrolysis via reactive molecular dynamics simulation and TG-IR technology," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010297
    DOI: 10.1016/j.renene.2023.119115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.