IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp506-513.html
   My bibliography  Save this article

Preparation of composite HZSM-5 catalyst by green template and catalytic the pyrolysis of biomass to produce aromatics

Author

Listed:
  • Li, Xiaohua
  • Sun, Jiayuan
  • Shao, Shanshan
  • Yan, Jinlong
  • Cai, Yixi

Abstract

In this study, HZSM-5 was modified by green templates (cellulose, starch and glucose), the mesoporous structure was successfully introduced, and the prepared composite catalyst was used for the catalytic pyrolysis of biomass to prepare aromatics hydrocarbon. It was revealed that the additionally introduced mesopore pore size was closely related to the size of the template molecule. The formation of pore structures with larger pore sizes on the catalyst was facilitated by larger polysaccharide templates (starch and cellulose). The increase in mesopore pore size was promoted by the cellulose and starch templates, while the increase in the number of mesopores was promoted by the glucose template. The pore size of the catalyst has a great influence on selectivity of BTX. Selectivity of BTX with larger carbon numbers (xylene, trimethylbenzene) was improved by the mesoporous structure with larger pore size. Excellent catalytic performance is also shown on template modified catalysts. The maximum yield of BTX was 10.18 wt%, which was about 1.1times higher than HZSM-5. In addition, the decomposition of macromolecular substances in the pyrolysis gas was promoted by the mesoporous structure of the template-modified catalyst, and the formation of coke on the catalyst was prevented.

Suggested Citation

  • Li, Xiaohua & Sun, Jiayuan & Shao, Shanshan & Yan, Jinlong & Cai, Yixi, 2023. "Preparation of composite HZSM-5 catalyst by green template and catalytic the pyrolysis of biomass to produce aromatics," Renewable Energy, Elsevier, vol. 206(C), pages 506-513.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:506-513
    DOI: 10.1016/j.renene.2023.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palizdar, A. & Sadrameli, S.M., 2020. "Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions," Renewable Energy, Elsevier, vol. 148(C), pages 674-688.
    2. Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    2. Chaihad, Nichaboon & Situmorang, Yohanes Andre & Anniwaer, Aisikaer & Kurnia, Irwan & Karnjanakom, Surachai & Kasai, Yutaka & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2021. "Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil," Renewable Energy, Elsevier, vol. 169(C), pages 283-292.
    3. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    4. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    5. Guohong Wang & Shunli Zhang & Zhuo Huang & Xin Cui & Zhengchang Song, 2023. "Study of the Structure and Catalytic Activity of B-Site Doping Perovskite for an Inferior Anthracite Coal Combustion," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Kostyniuk, Andrii & Bajec, David & Likozar, Blaž, 2022. "Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor," Renewable Energy, Elsevier, vol. 188(C), pages 240-255.
    7. Mingyuan Zhang & Xue Han & Huanang Wang & Yimin Zeng & Chunbao Charles Xu, 2023. "Hydrodeoxygenation of Pyrolysis Oil in Supercritical Ethanol with Formic Acid as an In Situ Hydrogen Source over NiMoW Catalysts Supported on Different Materials," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    8. Du, Jinlong & Zhang, Fengxia & Hu, Jianhang & Yang, Shiliang & Liu, Huili & Wang, Hua, 2022. "Pyrolysis of rubber seed oil over high-temperature copper slag: Gas and mechanism of coke formation," Renewable Energy, Elsevier, vol. 185(C), pages 1209-1220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:506-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.