IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp35-45.html
   My bibliography  Save this article

Hydrogenation of the pivotal biorefinery platform molecule levulinic acid into renewable fuel γ-valerolactone catalyzed by unprecedented highly active and stable ruthenium nanoparticles in aqueous media

Author

Listed:
  • Anagnostopoulou, Eleni
  • Lilas, Panagiotis
  • Diamantopoulou, Perikleia
  • Fakas, Christos
  • Krithinakis, Ioannis
  • Patatsi, Eleni
  • Gabrielatou, Elpida
  • van Muyden, Antoine P.
  • Dyson, Paul J.
  • Papadogianakis, Georgios

Abstract

γ-Valerolactone (GVL) is a key downstream product of renewable biomass with enormous potential for the manufacture of advanced biofuels, bio-based chemicals, materials or for its direct use as an additive to gasoline and is obtained by the hydrogenation reaction of the important platform molecule levulinic acid (LA). Unprecedented high catalytic activities (TOF = 42530 h−1) have been achieved by water-dispersible ruthenium nanoparticles (RuNPs) stabilized by a broad spectrum of water-soluble polymers with both oxygen-containing functionalities such as the non-toxic and inexpensive polyethylene glycol (PEG) and poly(vinyl alcohol) (PVA) and with polymers bearing nitrogen-groups in the hydrogenation of LA to obtain with high selectivities (99.2 mol%) GVL in the aqueous medium. Furthermore, water provides for a desired higher dispersion of RuNPs catalysts capable to achieve high activities and impressive stabilities. The calculated apparent activation energy of the RuNPs/PEG catalyst amounts a low value of 32.3 kJ/mol. TEM investigations revealed the formation of RuNPs/PVA catalysts with a small average particle size diameter of 2.8 ± 0.1 nm which is consistent with the high catalytic activities. Recycling experiments have shown that the RuNPs/PVA catalyst demonstrated superb stability and selectivity in five consecutive runs at a high molar ratio LA/Ru = 16000 which is of industrial interest.

Suggested Citation

  • Anagnostopoulou, Eleni & Lilas, Panagiotis & Diamantopoulou, Perikleia & Fakas, Christos & Krithinakis, Ioannis & Patatsi, Eleni & Gabrielatou, Elpida & van Muyden, Antoine P. & Dyson, Paul J. & Papad, 2022. "Hydrogenation of the pivotal biorefinery platform molecule levulinic acid into renewable fuel γ-valerolactone catalyzed by unprecedented highly active and stable ruthenium nanoparticles in aqueous med," Renewable Energy, Elsevier, vol. 192(C), pages 35-45.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:35-45
    DOI: 10.1016/j.renene.2022.04.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhihao & Lu, Xuebin & Liu, Chen & Han, Yiwen & Ji, Na, 2019. "Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 140-157.
    2. He, Jian & Li, Hu & Xu, Yufei & Yang, Song, 2020. "Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions," Renewable Energy, Elsevier, vol. 146(C), pages 359-370.
    3. Cai, Bo & Zhang, Yongjian & Feng, Junfeng & Huang, Cong & Ma, Tianyi & Pan, Hui, 2021. "Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel γ-valerolactone," Renewable Energy, Elsevier, vol. 177(C), pages 652-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostovar, Somayeh & Saravani, Hamideh & Rodríguez-Padrón, Daily, 2021. "Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions," Renewable Energy, Elsevier, vol. 178(C), pages 1070-1083.
    2. Cai, Bo & Kang, Rui & Guo, Dayi & Feng, Junfeng & Ma, Tianyi & Pan, Hui, 2022. "An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-Hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1629-1638.
    3. Peng, Lincai & Huangfu, Xin & Liu, Yao & Liu, Huai & Zhang, Junhua, 2022. "Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate," Renewable Energy, Elsevier, vol. 193(C), pages 357-366.
    4. Dookheh, Maryam & Najafi Chermahini, Alireza & Saraji, Mohammad, 2022. "Organic-inorganic bi-functionalized hybrid KIT-5: A toolbox for catalytic dehydration of xylose to n-hexyl levulinate," Renewable Energy, Elsevier, vol. 200(C), pages 527-536.
    5. Yao, Yunlong & Yu, Zhiquan & Lu, Chenyang & Sun, Fanfei & Wang, Yao & Sun, Zhichao & Liu, Yingya & Wang, Anjie, 2022. "Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide," Renewable Energy, Elsevier, vol. 197(C), pages 69-78.
    6. Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Oppong, Francis & Zhongyang, Luo & Li, Xiaolu & Song, Yang & Xu, Cangsu & Diaby, Abdullatif Lacina, 2022. "Methyl pentanoate laminar burning characteristics: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 197(C), pages 228-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.