IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp469-477.html
   My bibliography  Save this article

The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets

Author

Listed:
  • Pan, Jiaqi
  • Li, Hongli
  • Li, Shi
  • Ou, Wei
  • Liu, Yanyan
  • Wang, Jingjing
  • Song, Changsheng
  • Zheng, Yingying
  • Li, Chaorong

Abstract

Nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets are fabricated by a simple continuously hydrothermal method, there, CdS nanorods are preliminarily fabricated by the hydrothermal method, and then Ni–Co–S nanoparticles are deposited on the surface of CdS nanorods. Evaluated by the photocatalytic hydrogen production, the photocatalytic performance of CdS/Ni–Co–S (∼6.56 mmol/g∙h) exhibits an obvious enhancement of about ∼240 folds than typical CdS. The main reasons for the HER enhancement are ascribed to that, the active facets can promote the photo-generated electron aggregating at surface to increase the HER activities, Pt-like behavior Ni–Co–S can promote the photo-generated electrons transferring/diffusing into the water, the small size of CdS nanorods and Ni–Co–S nanoparticles can provide sufficient HER active sites and shorten the transferring route, which can be supported by the electrochemical measurements.

Suggested Citation

  • Pan, Jiaqi & Li, Hongli & Li, Shi & Ou, Wei & Liu, Yanyan & Wang, Jingjing & Song, Changsheng & Zheng, Yingying & Li, Chaorong, 2020. "The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets," Renewable Energy, Elsevier, vol. 156(C), pages 469-477.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:469-477
    DOI: 10.1016/j.renene.2020.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, En-Chin & Huang, Bing-Shun & Liu, Chao-Chang & Wey, Ming-Yen, 2015. "Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts," Renewable Energy, Elsevier, vol. 75(C), pages 266-271.
    2. Wang, Chao & Bu, Enqi & Chen, Ying & Cheng, Zhengdong & Zhang, Jingtao & Shu, Riyang & Song, Qingbin, 2019. "Enhanced photoreforming hydrogen production: Pickering interfacial catalysis from a bio-derived biphasic system," Renewable Energy, Elsevier, vol. 134(C), pages 113-124.
    3. Markovskaya, Dina V. & Gribov, Evgenii N. & Kozlova, Ekaterina A. & Kozlov, Denis V. & Parmon, Valentin N., 2020. "Modification of sulfide-based photocatalyst with zinc- and nickel-containing compounds: Correlation between photocatalytic activity and photoelectrochemical parameters," Renewable Energy, Elsevier, vol. 151(C), pages 286-294.
    4. Wang, Peifang & Wu, Tengfei & Ao, Yanhui & Wang, Chao, 2019. "Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 131(C), pages 180-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arturo de Risi & Gianpiero Colangelo & Marco Milanese, 2023. "Advanced Technologies for Green Hydrogen Production," Energies, MDPI, vol. 16(6), pages 1-4, March.
    2. Zhang, Heqing & Yu, Zebin & Jiang, Ronghua & Hou, Yanping & Huang, Jun & Zhu, Hongxiang & Yang, Fei & Li, Mingjie & Li, Fengyuan & Ran, Qi, 2021. "Metal organic frameworks constructed heterojunction with α-NiS-β-NiS/CdS: The effect of organic-ligand in UiO-66 for charge transfer of photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 168(C), pages 1112-1121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jiaqi & Liu, Yanyan & Ou, Wei & Li, Shi & Li, Hongli & Wang, Jingjing & Song, Changsheng & Zheng, Yingying & Li, Chaorong, 2020. "The photocatalytic hydrogen evolution enhancement of the MoS2 lamellas modified g-C3N4/SrTiO3 core-shell heterojunction," Renewable Energy, Elsevier, vol. 161(C), pages 340-349.
    2. Ding, Haoran & Xu, Mengyu & Zhang, Shicong & Yu, Fengtao & Kong, Kangyi & Shen, Zhongjin & Hua, Jianli, 2020. "Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation," Renewable Energy, Elsevier, vol. 155(C), pages 1051-1059.
    3. Tang, Liang & Wang, Jing & Liu, Xudong & Shu, Xiaoqing & Zhang, Zhaohong & Wang, Jun, 2019. "Fabrication of Z-scheme photocatalyst, Er3+:Y3Al5O12@NiGa2O4-MWCNTs-WO3, and visible-light photocatalytic activity for degradation of organic pollutant with simultaneous hydrogen evolution," Renewable Energy, Elsevier, vol. 138(C), pages 474-488.
    4. Prabakar, Desika & Manimudi, Varshini T. & Suvetha K, Subha & Sampath, Swetha & Mahapatra, Durga Madhab & Rajendran, Karthik & Pugazhendhi, Arivalagan, 2018. "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 306-324.
    5. Li, Yanbing & Zhu, Pengfei & Tsubaki, Noritatsu & Jin, Zhiliang, 2022. "Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 198(C), pages 626-636.
    6. Li, Hongying & Gong, Haiming & Hao, Xuqiang & Wang, Guorong & Jin, Zhiliang, 2022. "Phosphating MIL-53(Fe) as cocatalyst modified porous NiTiO3 for photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 188(C), pages 132-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:469-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.