IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp892-905.html
   My bibliography  Save this article

Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus

Author

Listed:
  • Teo, Siow Hwa
  • Islam, Aminul
  • Masoumi, Hamid Reza Fard
  • Taufiq-Yap, Yun Hin
  • Janaun, Jidon
  • Chan, Eng-Seng
  • khaleque, M.A.

Abstract

The recovery of waste as feedstock away from organizational limitations corresponds to a prospective supplementary revenue stream for the organization. A novel waste eggshell of Gallus domesticus derived superbasic nanocatalyst was synthesized through betaine amphoteric surfactant-assisted decomposition, adsorption and precipitation processes. By varied the duration synthesis of gel mixture, the morphology transformation from liquid-solid interconnected macro-size particles to regular spheroidal nanoassemblies particles is detected. The surfactant at the liquid-solid interface facilitates the mono dispersion of nanoparticles by hindering growth of crystals. The average particle diameter of the produced superbasic nanocatalyst was in the range of 27–16 nm. The synthesized nanoparticle formation mechanism in the presence surfactant has also been addressed in this study. The catalytic activity of superbasic nanocatalyst was investigated for biodiesel production from crude Jatropha curcas oil (JCO) via glycerolysis and transesterification with methanol at atmospheric pressure. Artificial neural network (ANN) based on the genetic algorithm (GA) was applied for optimization of varied reaction parameters. It was observed that the reduction of acidity varied with varying reaction conditions. The highest fatty acid methyl ester (FAME) yield (97%) was obtained when the reaction was allowed to run at 60 °C for 300 min, while at 90 °C the maximal FAME yield of 98% was achieved after 120 min. The kinetic parameters of nanocatalyst were determined, and the reaction system followed pseudo first order kinetics. The results suggest that this two steps process using superbasic nanocatalyst affords a promising method to convert oils with high FFA level to biodiesel.

Suggested Citation

  • Teo, Siow Hwa & Islam, Aminul & Masoumi, Hamid Reza Fard & Taufiq-Yap, Yun Hin & Janaun, Jidon & Chan, Eng-Seng & khaleque, M.A., 2017. "Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus," Renewable Energy, Elsevier, vol. 111(C), pages 892-905.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:892-905
    DOI: 10.1016/j.renene.2017.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aminul Islam & Mohammad Tofayal Ahmed & Md Alam Hossain Mondal & Md. Rabiul Awual & Minhaj Uddin Monir & Kamrul Islam, 2021. "A snapshot of coal‐fired power generation in Bangladesh: A demand–supply outlook," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 157-182, May.
    2. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:892-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.